

Surface properties and photocatalytic activity of semiconductor composites

Adriana Zaleska

Department of Environmental Technology

First, second and third generation of photocatalysts

To study the influence of preparation method as well as type and amount of composite components on the surface properties and photocatalytic activity of nanocomposites materials

Semiconductors

Hydrothermal synthesis

Surface characterization

Photoactivity measurements KTaO₃-CdS, KTaO₃-MoS₂ and KTaO₃-CdS-MoS₂

□hydrothermal synthesis of single semiconductors

calcination step

Autoclaving: 200°C, 24h Filtered, dried (60°C)

Sample label	KTaO₃ : CdS : MoS₂ molar ratio	Preparation method		
KTaO₃	1:0:0	hydrothermal		
CdS	0:1:0	solvothermal		
MoS ₂	0:0:1	hydrothermal		
CdS-MoS ₂ 5-1	0:5:1	one step solvothermal		
CdS-MoS ₂ 4-1	0:4:1	one step solvothermal		
CdS-MoS ₂ 1-1	0:1:1	one step solvothermal		
CdS-MoS ₂ 1-5	0:1:5	one step solvothermal		
KTaO₃-CdS 10-1_MS	10:1:0	one step solvothermal		
KTaO₃-CdS 10-1_C	10:1:0	hydro/solvothermal and calcination		
KTaO ₃ -MoS ₂ 10-1_MS	10:0:1	one step solvothermal		
KTaO ₃ -MoS ₂ 10-1_C	10:0:1	hydro/solvothermal and calcination		
KTaO ₃ -CdS-MoS ₂ 10-1-1_MS	10:1:1	one step solvothermal		
KTaO ₃ -CdS-MoS ₂ 10-1-1_C	10:1:1	hydro/solvothermal and calcination		
KTaO ₃ -CdS-MoS ₂ 10-5-1_MS	10:5:1	one step solvothermal		
KTaO ₃ -CdS-MoS ₂ 10-5-1_C	10:5:1	hydro/solvothermal and calcination		

ID MARINA CCIA

Hydrothermal synthesis

One pot synthesis

Two steps synthesis

Optical properties (diffuse reflectance spectra)
BET surface area
Crystal structure (powder X-ray diffraction)
Morphology (SEM microscopy)

Hydrothermal synthesis

Phenol degradation in the aqueous phaseToluene degradation in the gas phase

Surface characterization

Photoactivity measurements

25 LEDs (λ_{max} = 375 nm, 63 mW per diode)

SEM images of single semiconductors

M. Marchelek et al. / Catalysis Today (2014) – submitted

Photoactivity of single, binary and ternary semiconductors (toluene degradation in gas phase)

Sample label and type of Molar ratio of nanocomposite semiconductors			Preparation method	BET surface area [m ² ·g ⁻¹]	Degradation efficiency of toluene in the gas phase after 60 min. irradiation over semiconductors in t fourth subsequent cycles (LEDs, $\lambda_{max} = 375 \text{ min.})$ [%] 1 st cycle 2 nd cycle 3 rd cycle 4 th cycl			
single	KTaO _{3 octahedral}	-	one-step hydrothermal	22.2	44	38	37	33
	KTaO _{3 cubic}	-		0.1 <	64	63	42	37
	WO3	-		10.4	36	33	32	30
	CdS	-		1.2	57	57	57	52
	CdSe	-		12.7	28	27	26	19
	MoS ₂	-		1.8	46	23	22	22
	SrTiO₃	-		17.8	41	39	35	34
binary	KTaO3+MO3	2:1	two-steps	8.1	62	28	14	13
	KTaO3+MO3	10:1	KTaO₃ + hydrothermal	2.5	43	37	31	29
	KTaO₃+CdSe	10:1	one-step hydrothermal	33.9	42	38	37	33
	KTaO₃+CdS	10:1		17.5	47	45	41	40
ternary	KTaO3+CdS+WO3	10:1:1	two-steps KTaO₃ + hydrothermal	2.6	51	32	33	29
	KTaO3+CdS+WO3	20:1:1		2.2	51	39	35	31
	KTaO3+CdS+MoS2	10:5:1		4.6 <	59	56	56	55
	KTaO₃+CdSe+SrTiO₃	1:5:10	one-step hydrothermal	56.8	60	39	38	35
	KTaO ₃ +CdSe+SrTiO ₃	10:5:10		58.9	60	56	50	48
	KTaO3+CdS+MoS2	10:5:1		10.3	50	41	43	42

M. Marchelek et al. / Catalysis Today (2014) – submitted

KTaO₃-CdS-MoS₂ nanocomposites

 $KTaO_3 cubic \qquad CdS \qquad MoS_2$

CdS-MoS₂ binary nanocomposites

CdS:MoS₂ = 4:1

(b) CdS:MoS₂ = 1:5 $2 \mu m$

(d)

SEM images of binary CdS-MoS₂ composites obtained by solvothermal mixed solution methods with different molar ratio of CdS:

- (a) CdS:MoS₂ = 5:1; (sample CdS-MoS₂ 5-1);
- (b) CdS:MoS₂ = 4:1 (sample CdS-MoS₂ 4-1);
- (c) CdS:MoS₂ = 1:1 (sample CdS-MoS₂ 1-1);
- (d) $CdS:MoS_2 = 1:5$ (sample $CdS-MoS_2$ 1-5)

nanoleafs → hexagonal shaped nanostructures → bonded microspheres

KTaO₃-CdS and KTaO₃-MoS₂ binary nanocomposites

(d)

KTaO₃-CdS-MoS₂ ternary nanocomposites

(d)

KTaO₃-CdS-MoS₂ based nanocomposites: optical properties

KTaO₃-CdS-MoS₂ based nanocomposites: photoactivity (phenol degradation in aqueous phase under UV irradiation)

KTaO₃-CdS-MoS₂ based nanocomposites: photoactivity (phenol degradation in aqueous phase under visible irradiation, $\lambda > 420$ nm)

KTaO₃-CdS-MoS₂ based nanocomposites: photoactivity (phenol degradation in aqueous phase under UV and visible irradiation)

B. Bajorowicz et al. / Molecules 19 (2014) 15339-15360

		Toluene degradation after 1 h irradiation					
Sample label	Phenol degradation rate under UV–Vis (µmol·dm ⁻³ ·min ⁻¹)	(LEDs, λ _{max} =375 nm) [%]					
		1 st cycle	2 nd cycle	3 rd cycle	4 th cycle		
KTaO3	0.79	64	63	42	37		
CdS	0.61	57	57	57	52		
MoS ₂	0.90	46	23	22	22		
CdS-MoS ₂ 1-5	0.77	57	53	44	27		
CdS-MoS ₂ 1-1	0.62	61	53	62	52		
CdS-MoS ₂ 5-1	0.81	70	60	49	48		
CdS-MoS ₂ 4-1	1.41	53	56	60	62		
KTaO ₃ -CdS 10-1_MS	2.08	47	45	41	40		
KTaO ₃ -CdS 10-1_C	1.75	53	48	52	50		
KTaO ₃ -MoS ₂ 10-1_MS	1.69	55	51	49	51		
KTaO ₃ -MoS ₂ 10-1_C	0.55	46	34	37	35		
$KTaO_3$ -CdS-MoS $_2$ 10-1-1_MS	1.15	50	52	48	39		
$KTaO_3$ -CdS-MoS ₂ 10-1-1_C	1.11	53	54	49	40		
$KTaO_3$ -CdS-MoS ₂ 10-5-1_MS	1.99	50	41	43	41		
$KTaO_3$ -CdS-MoS ₂ 10-5-1_C	2.81	<u> </u>	48	50	46		

CdS-MoS₂ binary nanocomposites: crystal structure

B. Bajorowicz et al. / Molecules 19 (2014) 15339-15360

KTaO₃-CdS and KTaO₃-MoS₂ binary nanocomposites: crystal structure

KTaO₃-CdS-MoS₂ ternary nanocomposites: crystal structure

New phase appeared !!

 $CdMoO_4$ (\downarrow)

Pure and Ag doped $CdMoO_4$ revealed photocatalytic activity $(E_g = 3.4 \text{ eV})$

Possible excitation mechanism

Conclusions

- Loading MoS₂ onto CdS as well as loading CdS onto KTaO₃ significantly enhanced absorption properties as compared with single semiconductors;
- 2. The highest photocatalytic activity in phenol degradation reaction under both UV-Vis and visible light irradiation and very good stability in toluene removal was observed for ternary hybrid obtained by calcination of KTaO₃, CdS, MoS₂ powders at the 10:5:1 molar ratio;
- Enhanced photoactivity could be related to the two-photon excitation in KTaO₃-CdS-MoS₂ composite under UV-Vis and/or to additional presence of CdMoO₄ working as co-catalyst.

Acknowledgments

Contribution by:

- B. Bajorowicz, A.Cybula, (Faculty of Chemistry, Gdansk University of Technology)
- M. Marchelek, P. Mazierski, N. Fijałkowska (*Faculty of Chemistry, University of Gdansk*)
- M. Winiarski, T. Klimczuk (Faculty of Applied Physics and Mathematics, , Gdansk University of Technology)

Financial support:

Thank you for your attention